Création d'une symbiose industrielle
Informations

Pour obtenir plus de renseignements, communiquez avec le Centre de transfert technologique en écologie industrielle (CTTÉI)

3000, boulevard de Tracy
Sorel-Tracy (Québec)
Canada J3R 5B9

Téléphone : 450 742-6651 poste 5301
Télécopieur : 450 730-0867

Courriel : cttei@cegepst.qc.ca
Site Web CTTÉI : cttei.qc.ca
Site Web Synergie Québec : synergiquebec.ca

ISBN : 978-2-9814035-0-6 (version imprimée)
ISBN : 978-2-9814035-1-3 (PDF)

Dépôt légal - Bibliothèque et Archives nationales du Québec, 2013
Dépôt légal - Bibliothèque et Archives Canada, 2013

© CTTÉI, 2013
Équipe de réalisation

Auteure
Jennifer Pinna, B.A.

Chef de projet
Karine Markewitz, ing., Ph. D.

Direction technique
Claude Maheux-Picard, ing., M. Sc. A.

Collaborateurs
Ashley Finlayson, B.Sc.
Hélène Gignac, M. Sc.
Marc J. Olivier, M. Env., M. Sc.
Jean-François Vermette, M. Sc.
David Verville, B. ing.

Droits et responsabilités
Ce guide a été préparé par le Centre de transfert technologique en écologie industrielle (CTTEI) et les droits d’auteur lui appartiennent. Il peut être sauvegardé, imprimé en tout ou en partie et diffusé à la condition que le CTTEI soit cité comme référence.

Tous les efforts ont été déployés par le CTTEI afin d’assurer l’exactitude de l’information incluse dans le rapport. Les avis et opinions exprimés dans le rapport sont uniquement ceux du CTTEI.

Référence bibliographique
Avant-propos

Ce guide est le résultat de réflexions menées par le Centre de transfert technologique en écologie industrielle (CTTÉI) au cours du projet de symbiose du Parc industriel et portuaire de Bécancour, dans la région du Centre-du-Québec (Québec). Réalisé avec l’appui du ministère de l’Enseignement supérieur, de la Recherche, de la Science et de la Technologie (MESRST), de la Société du parc industriel et portuaire de Bécancour et du Comité des organismes et entreprises du parc, ce premier projet pilote a impliqué plus d’une dizaine d’entreprises et de fournisseurs de services environnementaux du Centre-du-Québec.

En parallèle, le CTTÉI a piloté et collaboré depuis 2008 à une demi-douzaine de projets de symbiose industrielle au Québec et en Ontario, du diagnostic territorial à l’emploi de conseillers en écologie industrielle ou de développement durable.

Pour en savoir plus

Consulter les pages Internet et les blogs de chacun des projets de symbiose industrielle du CTTÉI sur le site de Synergie Québec (synergiequebec.ca).

La réalisation de ce guide a été rendue possible grâce, notamment, à la participation financière du ministère de l’Enseignement supérieur, de la Recherche, de la Science et de la Technologie (MESRST) dans le cadre du Programme de soutien à la valorisation et au transfert.
Sommaire

Introduction ... 1
1. Objectif du guide .. 2
 1.1. À qui s’adresse le guide? .. 2
 1.2. Comment utiliser le guide? .. 3
 1.3. Structure du guide ... 3
2. Gestion des matières résiduelles au Québec 4
 2.1. Contexte législatif .. 4
 2.1.1. Politique de gestion des matières résiduelles 5
 2.2. Matières et secteurs d’activité 7
 2.3. Services de collecte et lieux de disposition 8
3. ABC de l’écologie industrielle 10
 3.1. Écologie industrielle ... 10
 3.2. Symbioses industrielles .. 11
 3.3. Synergies .. 12
 3.3.1. Synergies de substitution 12
 3.3.2. Synergies de mutualisation 13
4. Créer une symbiose industrielle 14
 4.1. Parties prenantes ... 14
 4.1.1. Porteur du projet ... 14
 4.1.2. Équipe de réalisation ... 16
 4.1.3. Conseiller en écologie industrielle 16
 4.1.4. Organisations participantes 17
 4.1.5. Expertise technique ... 19
 4.2. Étapes d’implantation .. 19
 4.2.1. Étape 1 : Élaboration du projet 20
 4.2.2. Étape 2 : Diagnostic territorial 21
 4.2.3. Étape 3 : Recrutement des participants et collecte de données ... 21
 4.2.4. Étape 4 : Identification des synergies potentielles 23
 4.2.5. Étape 5 : Mise en place et suivi 24
5. Bilan .. 26
6. Symbiose industrielle : perspective à long terme 29
Conclusion .. 30
Références ... 31
Annexes ... 32
Tableaux et figures

Tableaux

Tableau 1: Hiérarchie des 3 RV-e ... 6
Tableau 2: Préoccupations, attentes et enjeux des parties prenantes ... 15
Tableau 3: Exemples de participants et de leurs activités dans une symbiose 18
Tableau 4: Étapes d’implantation d’une symbiose industrielle ... 20
Tableau 5: Diagnostic territorial ... 21
Tableau 6: Synthèse des projets de symbiose du CTTÉI ... 25
Tableau 7: Indicateurs de suivi d’un projet de symbiose industrielle .. 27
Tableau 8: Programmes de RECYC-QUÉBEC .. 35
Tableau 9: Programmes de certification ... 37

Figures

Figure 1: Schéma de symbiose industrielle ... 11
Figure 2: Types de synergies .. 12
Figure 3: Exemples de synergies de substitution .. 13
Figure 4: Parties prenantes .. 16
Figure 5: Rôles des participants dans une symbiose ... 17
Figure 6: Étapes d’implantation et amélioration continue .. 29
Introduction

L’impératif de l’efficacité économique, le respect de l’environnement, la gestion des ressources, la réduction des émissions de gaz à effet de serre et des considérations sociales imposent au secteur industriel des pressions croissantes. Pour concilier les sphères du développement durable, l’écologie industrielle a développé des concepts et des pratiques industrielles novatrices du « berceau au berceau ». Dans le contexte industriel actuel, l’écologie industrielle va plus loin qu’une réflexion conceptuelle, c’est une approche terrain qui s’impose.

À l’image des écosystèmes naturels, l’écologie industrielle propose des outils visant à optimiser l’utilisation des ressources et à réduire la quantité de déchets produits dans une perspective de « bouclage des flux ». La symbiose industrielle est sans doute l’exemple le plus concret de ce concept. Le défi est de mettre en circulation les matières et l’énergie résiduelles des uns pour les substituer aux intrants des autres. Objectif : allonger le cycle de vie des ressources par la substitution et la mutualisation des flux! Ce mouvement circulaire s’applique aussi bien aux ressources humaines que matérielles; échange d’expertise et de services, partage d’équipements, etc.

Ce guide propose une méthode simple pour amorcer un projet de symbiose industrielle. La méthodologie développée par le Centre de transfert technologique en écologie industrielle (CTTÉI) est basée sur des concepts d’écologie industrielle, les principes de la Loi sur le développement durable du Québec, mais surtout sur l’expérience des projets de symbiose industrielle qu’il a réalisés depuis 2008.
1. Objectif du guide

L’objectif de ce guide est de fournir des outils méthodologiques et opérationnels pour entreprendre une démarche de symbiose industrielle. Impossible toutefois d’y parvenir seul ! Le succès et la pérennité de la symbiose reposent fondamentalement sur la participation de différents acteurs et sur une planification et une coordination efficaces.

1.1 À qui s’adresse le guide?
Ce guide est principalement destiné aux agences de développement économique et autres décideurs publics ou privés qui souhaitent entreprendre une démarche de symbiose industrielle dans une perspective de développement local durable. Les autres parties prenantes concernées y trouveront de l’information pertinente sur les enjeux d’un tel projet et sur le rôle très actif qu’elles seront amenées à y jouer.

En annexe

Le guide fournit des références en lien avec l’écologie industrielle et des outils pour accompagner les porteurs de projet dans les différentes étapes de création d’une symbiose industrielle.

Partager votre expérience

Vous avez lancé une initiative de symbiose industrielle ? N’hésitez pas à nous partager votre démarche, vos commentaires et vos suggestions. Aidez-nous à améliorer le guide!
1.2 Comment utiliser le guide?
La méthodologie et les outils proposés par le guide sont présentés à titre de suggestions. Le guide ne prétend pas être exhaustif : chaque projet, chaque territoire est unique. Les porteurs de symbioses devront adapter le processus à leurs attentes et à leur contexte industriel, économique, environnemental et social. Le guide est évolutif dans son contenu et sa forme. Il sera périodiquement mis à jour grâce aux retours d’expérience des différents projets de symbiose industrielle réalisés.

1.3 Structure du guide
Le guide est structuré en cinq sections. La première dresse un portail de la gestion des matières résiduelles au Québec. La seconde donne de l’information sur l’écologie industrielle, ses concepts et ses outils. La troisième présente les grandes étapes d’implantation d’une symbiose développées par le Centre de transfert technologique en écologie industrielle (CTTÉI). Les deux dernières sections proposent des moyens pour faire le bilan d’une démarche de symbiose dans une perspective d’amélioration continue et de pérennité.
2. Gestion des matières résiduelles au Québec

La société de consommation exerce une pression croissante sur les ressources, renouvelables ou non. Elle mène inexorablement à leur épuisement et à la remise en question du modèle de développement industriel traditionnel. Papier, carton, plastiques, verre, métaux, matières organiques, produits pétroliers, bois, béton, etc., mille et une ressources extraites, transformées, transportées, utilisées, rebutées ou, dans le meilleur des cas, mises en valeur. La croissance des déchets suit celle de la consommation. Pour faire face à cette problématique, l’écologie industrielle propose une approche systémique permettant d’optimiser les flux de matières et d’énergie dans un circuit sans fin de mise en valeur.

2.1 Contexte législatif
Qu’elle soit considérée comme levier ou comme frein, la législation est un impératif avec lequel les organisations doivent conjuguer. Pas moins d’une trentaine de réglementations canadiennes et québécoises encadrent l’impact des activités industrielles sur l’environnement : Loi sur la qualité de l’environnement, Règlement sur le transport des matières dangereuses, Règlement sur la récupération et la valorisation de produits par les entreprises, etc.

Comme dans toute activité industrielle, certains aspects réglementaires devront éventuellement être considérés dans les projets de symbiose industrielle ou de mise en valeur des résidus (obtention de permis ou de certificats d’autorisation, normes d’émission, etc.). Il est donc très important que les entreprises impliquées maîtrisent bien ces aspects.
2.1.1. Politique de gestion des matières résiduelles

Détourner de l'élimination toutes les matières pouvant être mises en valeur (c.-à-d. toutes sauf le résidu ultime) est le principal objectif du Plan d'action 2011-2015 de la Politique québécoise de gestion des matières résiduelles (PQGMR). Pour y parvenir, cette politique s’appuie sur le principe des 3RV-e (cf. tableau 1) et propose des stratégies comme mettre un terme au gaspillage des ressources naturelles en augmentant le taux de récupération et responsabiliser l’ensemble des acteurs concernés par la gestion des matières résiduelles.

Pour décourager et contrôler l’élimination, la PQGMR souhaite rendre les activités de mise en valeur des matières résiduelles plus concurrentielles en augmentant les redevances exigibles pour leur élimination de 9,50 $ par an pour la période du 1er octobre 2010 au 30 septembre 2015. En date du 1er janvier 2013, les redevances totales étaient de 20,91 $/TM. Cette facture est transférée aux usagers de l’élimination. S’ils ne modifient pas leurs pratiques, certains gros utilisateurs pourraient en être significativement affectés.

Résidu ultime?
Résidu qui résulte du tri, du conditionnement et de la mise en valeur des matières résiduelles et qui n’est plus susceptible d’être traité dans les conditions techniques et économiques disponibles pour en extraire la part valorisable ou en réduire le caractère polluant ou dangereux.

Principe des 3RV-e

À moins qu’une analyse basée sur une approche du cycle de vie des biens et des services ne démontre qu’une dérogation est justifiée, la réduction à la source, le réemploi, le recyclage, y compris par traitement biologique ou épandage sur le sol, les autres formes de valorisation de la matière, la valorisation énergétique et l’élimination doivent être privilégiés dans cet ordre dans le domaine de la gestion des matières résiduelles.

Politique québécoise de gestion des matières résiduelles, Plan d’action 2011-2015
www.mddep.gouv.qc.ca/matières/pgmr/presentation.pdf
Tableau 1: Hiérarchie des 3 RV-e

<table>
<thead>
<tr>
<th>3RV-e</th>
<th>Définition</th>
<th>Exemples</th>
</tr>
</thead>
</table>
| **Réduction à la source** | Diminution de la quantité de matière utilisée pour la fabrication, la distribution ou l’utilisation d’un produit ou service. | • Diminuer la masse de métal requise pour fabriquer un manche de marteau.
• Diminuer la masse des emballages d’un grille-pain pour sa commercialisation. |
| **Réemploi** | Utilisation répétée d’un produit ou d’un emballage sans modification de son apparence ou de ses propriétés. | • Réemployer une bouteille de plastique pour entreposer l’eau du robinet au réfrigérateur.
• Retourner une bouteille de bière consignée pour qu’elle soit lavée et remplie de nouveau. |
| **Recyclage** | Broyage mécanique d’une matière suivi de son utilisation comme matière secondaire en remplacement d’une matière première vierge de même nature. | • Broyer une bouteille de verre pour obtenir une poudre et fabriquer les nattes isolantes utilisées en construction.
• Broyer des résidus putrescibles pour les composter ou les biométhaniser. Épandre sur le sol le digestat. |
| **Valorisation matière** | Toute autre opération de valorisation par transformation irreversible des matériaux par laquelle des matières résiduelles sont traitées pour être utilisées comme substitut à des matières premières. | • Dépolymériser des plastiques récupérés pour synthétiser de nouveaux matériaux.
• Fragmenter la cellulose des débris de bois pour fabriquer de l’éthanol comme carburant automobile. |
| **Valorisation énergétique** | Récupération de l’énergie contenue dans les liens chimiques par transformation irreversible des matériaux récupérés. | • Utiliser des débris de bois dans un brûleur industriel.
• Chauffer des serres avec des huiles récupérées. |
| **Élimination** | Opération visant le dépôt ou le rejet définitif de matières résiduelles effectuée en vue de leur élimination sans mise en valeur. | • Mettre en décharge dans un site d’enfouissement.
• Stocker pêle-mêle sans mise en valeur.
• Incinérer en pure perte. |
Bannissements

La PQGMR actuelle identifie trois catégories de matières résiduelles à bannir de l’élimination d’ici 2020 : le papier et le carton en 2013, le bois en 2014 et les matières organiques d’ici 2020 (objectif intermédiaire de recyclage de 60 % pour 2015). Comment cela affectera-t-il la gestion des matières résiduelles pour les organisations et notamment pour les entreprises et les industries? Capacité d’entreposage ou de stockage insuffisante, parcs industriels peu desservis par des services de collecte, infrastructures de récupération éloignées, coûts de services exorbitants, etc. En travaillant par filière et en équipe, l’écologie industrielle peut optimiser l’offre de produits et services sur un territoire. Recyclage de proximité, collecte mutualisée, prix de groupe, plusieurs solutions existent.

2.2 Matières et secteurs d’activité

L’origine et la répartition des matières résiduelles déterminent leur classification selon trois secteurs : le secteur municipal, le secteur des Industries, Commerces et Institutions (ICI) et le secteur de la Construction, Rénovation et Démolition (CRD).

Secteur municipal

Chaque municipalité (ou leurs regroupements) est responsable de l’élaboration et de la mise en œuvre d’un plan de gestion des matières résiduelles conforme avec la Loi sur la qualité de l’environnement et la PQGMR. Les matières organiques putrescibles, le papier et carton et les boues municipales constituent la majeure partie de la masse de rejets. L’amélioration des infrastructures et la modification des comportements font progressivement diminuer la quantité de déchets élimée. Selon le Bilan 2010-2011 de la gestion des matières résiduelles au Québec réalisé par RECYC-QUÉBEC, le taux de mise en valeur des matières provenant des résidences et récupérées par la collecte sélective est de 59 %, une augmentation de 13 % en deux ans.

Secteur Industries, Commerces et Institutions (ICI)

Les ICI sont des établissements fixes responsables des résidus qu’ils génèrent. Cette gestion est souvent négociée individuellement par des contrats privés auprès d’entreprises de location et d’enlèvement de conteneurs. Les métaux et les matières organiques putrescibles constituent la majeure partie de leurs rejets. Dans certaines municipalités, certains ICI, dont la quantité de matières générée est faible, peuvent utiliser sans frais supplémentaires les services de collecte des matières recyclables et des déchets.

Secteur de la Construction, Rénovation et Démolition (CRD)

Le secteur CRD regroupe des entrepreneurs dont les travaux changent régulièrement de lieu. Les principaux flux proviennent essentiellement des infrastructures routières et publiques et du bâtiment (béton, brique, asphalté, gravats, métaux, bois, etc.).
2.3 Services de collecte et lieux de disposition

Deux décennies de politiques de gestion des matières résiduelles ont laissé des programmes et des infrastructures compartimentés. Le défi actuel : les intégrer et les faire fonctionner de concert. Par exemple, le secteur municipal offre la collecte sélective des matières recyclables sur près de 98 % du territoire québécois bâti, mais a négligé la récupération dans les immeubles de grande densité d’habitation (multilogements) et dans les petites et moyennes entreprises (PME).

Les matières visées par la collecte sélective sont les fibres de papier et de carton ainsi que les conteneurs et emballages de plastique, de verre et de métal. Pour les collecter et les trier en flux homogènes, le territoire québécois est desservi par des infrastructures de concentration et de tri. Leur nombre est en diminution au profit de centres de tri plus performants pouvant répondre à la hausse des quantités récupérées et à la qualité des flux de matières recherchées (grande capacité d’accueil et de traitement, équipements de tri mécanisés ou automatisés, etc.). Tout le secteur de la récupération et du recyclage porte toutefois encore la trace d’une double crise économique (perturbations de 2008-2009) dans la demande mondiale des matières triées et celle des investissements requis pour la modernisation des chaînes de tri.

Des programmes complémentaires à la charge financière des ICI concernés permettent de récupérer et recycler des matériaux spécialisés, comme ceux des consignes publique et privée qui ciblent les conteneurs de boissons gazeuses et de bière. Depuis peu, l’application de la responsabilité élargie des producteurs (RÉP) s’étend aux produits électroniques, aux piles et aux fluorescents, en plus des huiles usées et des peintures. Un autre réseau récupère déjà efficacement les pneus hors d’usage à la charge des consommateurs.
Les écocentres municipaux sont des points de collecte volontaires permettant de recueillir les matériaux qui ne peuvent être déposés dans les bacs de récupération : métaux, bois, résidus verts, résidus domestiques dangereux (RDD), objets réemployables, etc. Ils sont répandus dans la plupart des villes importantes et s’apparentent parfois à une déchèterie. Ces infrastructures sont surtout destinées aux citoyens et aux petits entrepreneurs (tarif commercial établi d’après le volume et la nature des matériaux déposés). Généralement, l’usager trié lui-même ses matériaux. Les matières récupérées sont par la suite acheminées vers des filières de mise en valeur. Des entreprises d’économie sociale opèrent également des réseaux de récupération dédiés à des matériaux spécifiques comme les textiles, les encombrants et les ordinateurs.

Les centres de tri pour matériaux de construction, rénovation et démolition (CRD) permettent le tri des matériaux en vrac provenant des entrepreneurs de ce secteur. Près d’une dizaine de ces centres sont présentement en activité, mais leur nombre est en explosion et ils s’établissent près de toutes les municipalités urbaines actives. Le Regroupement des récupérateurs et des recycleurs de matériaux de construction et de démolition du Québec (3R MCDQ) est par ailleurs un réseau très actif dans ce secteur (www.3rmcdq.qc.ca). Une dizaine de lieux d’enfouissement de débris de construction subsistent encore. Dès qu’ils seront remplis, aucune autre infrastructure de ce type ne sera autorisée par le ministère du Développement durable, de l’Environnement, de la Faune et des Parcs. Ces matières devront alors rejoindre les centres de tri de matériaux CRD ou être éliminées à prix fort dans les lieux d’enfouissement technique (LET).

Un réseau privé de récupérateurs de pièces automobiles et de métaux récupère efficacement les véhicules hors d’usage et les rejets industriels de métaux. Déchiquetés au besoin, ces résidus sont acheminés vers des fours à arc électrique. Ce secteur permet le recyclage d’une quantité importante de métaux. Le marché des pièces d’occasion est aussi un autre débouché d’importance.

L’élimination au Québec se concentre sur des opérations d’enfouissement dans une trentaine de LET aménagés et exploités conformément au Règlement sur l’enfouissement et l’incinération de matières résiduelles (étanchéité, captage et traitement des lixiviats et des biogaz, etc.). Les bannières édictées par la POGMR aideront à réduire significativement ces nuisances. Un seul grand incinérateur est toujours en activité à la ville de Québec pour l’élimination des ordures ménagères et pour l’incinération des boues de stations de traitement des eaux usées.

Écocentres

Les écocentres offrent aux citoyens, aux PME et à certains entrepreneurs des infrastructures de réemploi et de récupération des matières résiduelles : espace pour le dépôt et le tri en vrac, bâtiment couvert pour le dépôt de matériaux et d’articles réemployables, conteneurs pour la récupération de matières spécifiques comme les textiles, sensibilisation aux bonnes pratiques, etc.

L’écocentre LaSalle (Montréal) accepte par exemple les matières apparentées à celles du résidentiel provenant des petits commerces et des PME selon une tarification commerciale. Le nombre de visites n’est pas limité, mais les matières dangereuses et industrielles des ICI ne sont pas acceptedes.

Les services offerts varient d’un écocentre à l’autre. Il est recommandé que les ICI intéressés contactent d’abord l’écocentre de leur région pour prendre connaissance des modalités d’utilisation avant de s’y rendre.
3. ABC de l’écologie industrielle

Écologie et industrie? Les deux termes sont en apparence incompatibles. Et pourtant, comme les écosystèmes naturels, les systèmes industriels peuvent aspirer à un fonctionnement symbiotique et cyclique où les flux de matières, d’énergie et de ressources circulent en boucle d’un organisme à l’autre, d’une organisation à l’autre.

3.1 Écologie industrielle

Ainsi, comme le disait Lavoisier : « Rien ne se perd, rien ne se crée, tout se transforme ». Dans sa quête d’un système de production sans déchet, l’écologie industrielle a développé la pensée « cycle de vie »; des stratégies interdisciplinaires et des outils comme l’écoconception, les technologies et la production propres, les symbioses industrielles et l’analyse du cycle de vie (ACV).

En pratique, les industries n’évoluent pas en vase clos; elles font partie des collectivités et interagissent avec des parties prenantes toujours plus influentes et exigeantes. L’approche territoriale de l’écologie industrielle insiste sur l’importance de travailler en collaboration avec l’ensemble de ces acteurs dans de nouveaux modes de gouvernance pour optimiser l’utilisation des ressources sur le territoire.

Pour en savoir plus

L’écologie industrielle en 42 mots

Nicolas Vendette et Valérie Côté
Centre de transfert technologique en écologie industrielle (2008)
www.cttei.qc.ca/documents/Elen42mots.pdf
3.2 Symbioses industrielles

Une symbiose industrielle est un réseau d’organisations (entreprises, municipalités, organismes d’économie sociale, etc.) maillées entre elles par des échanges de matières, d’eau, d’énergie ou de ressources matérielles et humaines (cf. figure 1). Ces échanges sont appelés des « synergies ». Elles témoignent de l’application collaborative du principe des 3RV-e (Réduction à la source, Réemploi, Recyclage, Valorisation, Élimination). Leur objectif est d’augmenter l’efficacité économique des organisations, de réduire leurs impacts environnementaux et d’accroître leur responsabilité sociale. Par ailleurs, la proximité géographique des organisations joue un grand rôle dans la logistique de mise en place des synergies, voire de leur faisabilité économique.

Les retombées des synergies ne se traduisent pas seulement en gains pour les organisations, mais aussi pour l’ensemble du territoire hébergeant la symbiose. Attractivité et développement local, création de nouvelles entreprises par la disponibilité des flux de ressources, développement des compétences, etc.

Pour en savoir plus

3.3 Synergies

Les caractéristiques uniques de chaque territoire donnent lieu à la création de différents types de synergies. De façon générale, il s’agit de synergies de substitution ou de mutualisation réalisées entre les organisations du territoire (cf. figure 2).

3.3.1 Synergies de substitution

Dans ce type de synergie, un résidu se substitue en tout ou en partie à une matière première ou à un intrant dit vierge (cf. figure 3). Cette ressource appelée « matière secondaire » permet d’allonger l’utilisation et le cycle de vie des matériaux d’une organisation participante à l’autre. La concrétisation de ce type d’échange peut nécessiter le tri, la mise en forme (pastillage, granulation, ensachage, etc.) ou la décontamination préalable de la matière à utiliser, voire la réalisation de projets de recherche appliquée pour le développement d’un nouveau produit.

Les Minéraux Harsco : une synergie à la base d’un modèle d’affaires

L’industrie métallurgique génère de nombreux sous-produits qui, sommairement traités, peuvent être utilisés, entre autres, dans différentes applications de génie civil. À ce chapitre, Les Minéraux Harsco, située à Sorel-Tracy, valorise chaque année plus d’un million de tonnes de matières provenant des activités de Rio Tinto, Fer et Titane, d’Arcelor Mittal et des Forges de Sorel, des entreprises toutes situées à proximité.

Très active en recherche appliquée, Les Minéraux Harsco a notamment développé des produits spécialisés destinés aux marchés de la filtration pour piscine et du sablage au jet. Économies de frais de disposition pour les uns, produits mis en marché et création d’emplois pour les autres, toutes les entreprises impliquées dans cette synergie bénéficient de retombées significatives!

Les échanges possibles s’appliquent à une multitude de ressources de natures différentes :

- **Ressources immatérielles** :
 Services, méthodes, information, etc.
- **Résidus industriels et consommables** :
 Eaux, énergie, matières résiduelles, etc.
- **Ressources matérielles et équipements** :
 Machines, immeubles, entreposage, etc.
- **Ressources humaines** :
 Experts, techniciens, formateurs, etc.

Figure 2

Types de synergies

Substitution

3.3.2 Synergies de mutualisation
DANS UNE mutualisation, les participants partagent et tirent le meilleur parti de leurs ressources en coordonnant leur gestion et leurs besoins. Il s’agit de partager des services, des équipements, des espaces, etc. Le pouvoir du groupe permet notamment de réaliser des économies d’échelle dans l’achat de biens ou de services et d’optimiser la logistique sur le territoire. Une meilleure gestion du transport (approvisionnement, disposition, collectes, etc.) permet notamment d’améliorer le bilan carbone du groupe. Les ressources mutualisées peuvent être prises en charge par un tiers ou par un membre participant. Un membre participant peut aussi être l’utilisateur de ces ressources.

Matériaux verts et écoproduits

Matériaux et produits moins dommageables pour l’environnement tout au long de leur cycle de vie comparativement à d’autres matériaux et produits similaires sur le marché qui rendent le même service ou ont la même performance.

Exemples de mutualisation
- Regroupement de services aux employés (restauration, garderies, etc.).
- Conciergerie d’entreprises.
- Organisation du transport collectif pour les employés.
- Achats groupés de biens ou services (équipements de protection individuelle, palettes, déchiquetage de papier, collecte de carton, nettoyage d’uniformes, entretien paysager, sel de déneigement, déneigement).
- Partage d’espaces d’entreposage.
- Gestion commune de certains résidus pouvant mener au développement de nouveaux services ou industries à proximité (méthanisation, compostage, décontamination, broyage, etc.).

Défis de la mutualisation
La mise en place de réseaux de mutualisation peut rencontrer des défis logistiques et opérationnels. La concertation des parties intéressées est certainement le meilleur moyen de les surmonter, mais il n’est pas toujours simple de réunir ces parties et d’élaborer un plan où les intérêts de toutes sont défendus. À cette étape, l’assistance d’un tiers impartial peut aider à implanter efficacement des mutualisations efficaces.
- Traçabilité
- Responsabilité
- Assurance et contrôle de qualité
- Contamination du gisement
- Échéance et modalités d’annulation des contrats en cours
- Élaboration d’un calendrier de collecte
- Manque de ressources internes
4. Créer une symbiose industrielle

La création d’une symbiose ne s’improvise pas. Le Centre de transfert technologique en écologie industrielle (CTTÉI) a développé une méthodologie simple et polyvalente basée sur l’expérience des différents projets de symbiose qu’il a menés.

4.1 Parties prenantes

La considération des besoins des parties prenantes (cf. figure 4) dans l’élaboration d’un projet de symbiose est cruciale. Ces acteurs représentent tous les groupes, organisations ou individus susceptibles d’avoir un impact sur le projet ou d’être influencés par lui. Leurs enjeux varient, sont parfois opposés et évoluent dans le temps (cf. tableau 2). Pour le porteur du projet, il importe de bien les connaître afin d’établir ses priorités stratégiques et de planifier ses actions. Ils serviront également d’indicateurs pour mesurer l’avancement ou le succès du projet.

4.1.1 Porteur du projet

Le porteur du projet est celui qui initie la démarche de symbiose industrielle. Souvent déjà acteur du développement local, il possède une influence positive sur les différents groupes sollicités. Son rôle est notamment de faciliter les contacts entre l’équipe de réalisation, les organisations participantes et les autres ressources impliquées dans la symbiose. Il est responsable du montage financier, de la définition des objectifs et de la reddition de comptes. Sa démarche doit être transparente.

Exemples de porteurs de projets de symbiose

- **Organismes de développement économique**: centres locaux de développement (CLD), sociétés d’aide au développement des collectivités (SADC), chambres de commerce, etc.
- **Représentants et regroupement d’entreprises**: zone d’activités, parcs industriels, regroupements sectoriels, organismes sans but lucratif (OSBL), conseil patronal, etc.
- **Représentants politiques**: région administrative, municipalités régionales de comté (MRC), élus municipaux, maires, conseillers municipaux, etc.
- **Organismes environnementaux et sociaux**: conseils régionaux de l’environnement, organismes d’économie sociale, organismes intermunicipaux de gestion des matières résiduelles, etc.
Tableau 2: Préoccupations, attentes et enjeux des parties prenantes

<table>
<thead>
<tr>
<th>Parties prenantes</th>
<th>Préoccupations, attentes et enjeux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Économiques</td>
<td>Environnementaux</td>
</tr>
</tbody>
</table>
Initié en 2009 par le Centre local de développement de L’Assomption, le projet de symbiose industrielle territoriale de Lanaudière avait pour objectif d’offrir aux entreprises de la région un moyen innovant pour améliorer leur productivité et leur performance environnementale. Premier projet du genre au Québec, les interventions menées auprès des 158 entreprises participantes ont permis l’identification de près de 300 synergies représentant plus de 130 000 tonnes de matières résiduelles industrielles. Maintenant porté par Lanaudière Économique, un OSBL dont l’objectif est de regrouper les acteurs du développement économique de la région de Lanaudière, le projet a été bonifié avec l’embauche d’un conseiller en développement durable qui offre également aux entreprises des services de formation et d’accompagnement personnalisé.

4.1.2 Équipe de réalisation
L’équipe de réalisation relève directement du porteur du projet. Elle est responsable des orientations stratégiques, de la mise en œuvre du plan d’action, du suivi de l’avancement et du respect de l’échéancier. Certaines organisations créeront un comité interne ou mixte, selon l’implication des partenaires. D’autres préféreront déléguer entièrement le pilotage du projet à un tiers indépendant spécialisé dans ce type de démarche, comme le CTTÉI.

4.1.3 Conseiller en écologie industrielle
Membre de l’équipe de réalisation, le conseiller en écologie industrielle fait le lien entre les participants de la symbiose. En plus de son expertise technique en gestion des matières résiduelles et des procédés industriels, il doit posséder une bonne connaissance du territoire, des entreprises et des autres parties prenantes. Son rôle est notamment de collecter de l’information sur les besoins et les ressources disponibles, de proposer des synergies, de valider la faisabilité techno-économique des échanges potentiels et d’évaluer les gains économiques, environnementaux et sociaux. Il pourra également réaliser ou faire réaliser des tests de faisabilité technique sur site ou en laboratoire. Souvent, il est amené à assister la conception technique des solutions mises en œuvre et doit solutionner les aspects logistiques. Son soutien sera particulièrement utile pour faciliter les communications entre les intervenants et discuter des modalités d’échange. Au besoin, il pourra agir comme intermédiaire dans les négociations contractuelles et lors de l’implantation des synergies.

Les retours d’expérience montrent qu’au-delà des dimensions techniques, économiques et environnementales, l’aspect social joue un rôle capital dans le développement des symbioses industrielles puisqu’il permet de renforcer l’engagement des parties prenantes nécessaire à la pérennité de ces démarches.

Les parties prenantes

- Porteur du projet et partenaires
- Équipe de réalisation et conseiller en écologie industrielle
- Organisations participantes
- Fournisseurs de services
- Experts techniques
- Collectivité

Les retours d’expérience montrent qu’au-delà des dimensions techniques, économiques et environnementales, l’aspect social joue un rôle capital dans le développement des symbioses industrielles puisqu’il permet de renforcer l’engagement des parties prenantes nécessaire à la pérennité de ces démarches.
Symbiose du Parc industriel et portuaire de Bécancour

La symbiose industrielle du Parc industriel et portuaire de Bécancour a été le premier projet de symbiose réalisé par le CTTÉI. Dès 2008, 12 entreprises ont accepté de partager de l’information sur leurs activités, leurs besoins et sur les matières, l’eau et l’énergie qu’elles souhaitaient transiger à l’intérieur du parc. À partir des 102 offres et des 32 demandes de cette première ronde, 40 synergies ont été identifiées dont la valeur totale en économies de ressources est évaluée à près de 1,6 million de dollars! Depuis, un conseiller en écologie industrielle a été embauché et est dédié entièrement au projet de symbiose. Déjà, il a identifié près de 70 nouvelles synergies potentielles et la faisabilité technico-économique de plusieurs d’entre elles a été confirmée par les entreprises concernées. La mise en œuvre se poursuit…

4.1.4 Organisations participantes

Les organisations participantes représentent toutes les entités qui participent à la symbiose, à l’intérieur du groupe synergique ou à l’extérieur (cf. tableau 3). Les entreprises sont évidemment visées, mais aussi les municipalités et les fournisseurs de services environnementaux (récupérateurs, conditionneurs, recycleurs, etc.). Pour faciliter leur identification, elles peuvent être classées en quatre groupes (cf. figure 5).

Chaque territoire est habituellement desservi par des fournisseurs de services environnementaux. Leur participation au développement de la symbiose est particulièrement importante. En travaillant étroitement avec ce réseau, l’équipe de réalisation et le conseiller en écologie industrielle cherchent à optimiser la mutualisation et la circulation des flux afin d’augmenter l’efficacité du groupe et réduire la quantité de ressources éliminées.

Figure 5

Rôles des participants dans une symbiose

1. Génératueur: Celui qui a une matière à disposer (il offre un extrant).
2. Concentrateur: Celui qui prend en charge la mutualisation des ressources. Cette étape est parfois nécessaire pour obtenir un flux de taille suffisante pour être traité ou recyclé de manière rentable.
3. Transformateur: Celui qui effectue les étapes de transformation des ressources nécessaires pour obtenir les spécifications techniques exigées par le preneur.
4. Preneur: Celui qui utilise la matière secondaire (il demande un intrant).

Travailler ensemble!
Les Centres de formation en entreprise et récupération (CFER) ont pour mission d’accompagner les jeunes en difficulté scolaire et de leur offrir une formation préparatoire au marché du travail. Essentiellement lié au développement durable, ce réseau a permis la mise en place de services techniques variés touchant le démantèlement de matières résiduelles et leur traitement en vue d’une remise en marché sous une forme ou une autre. À titre d’exemple, le CFER Normand-Maurice, situé à Victoriaville, travaille entre autres au démantèlement de la quincaillerie de ligne d’Hydro-Québec, au tri de la quincaillerie de Bell Canada et au démantèlement d’appareils électroniques désuets rapatriés dans les succursales de Bureau en gros. Il a été le premier établissement du genre au Québec.

Réseau québécois des CFER
www.reseaucfer.ca

<table>
<thead>
<tr>
<th>Participants</th>
<th>Types d’acteurs</th>
<th>Rôles dans la symbiose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipalité</td>
<td>Concentrateur / Transformateur</td>
<td>Récupération et traitement des eaux usées (secteur résidentiel, petites industries, etc.).</td>
</tr>
<tr>
<td>Entrepreneur en gestion des matières résiduelles</td>
<td>Concentrateur / Transformateur</td>
<td>Collecte privée et traitement des déchets. Centre de tri des matières recyclables. Elimination en lieu d’enfouissement technique.</td>
</tr>
<tr>
<td>Centre de transfert</td>
<td>Concentrateur / Transformateur</td>
<td>Récupération et ségrégation de matières dangereuses.</td>
</tr>
<tr>
<td>Société mixte</td>
<td>Concentrateur</td>
<td>Collecte sélective. Récupération et tri de matières recyclables.</td>
</tr>
<tr>
<td>Fabricant d’armoires de cuisine</td>
<td>Générateur</td>
<td>Génération de retails de bois.</td>
</tr>
<tr>
<td>Fabricant d’emballages de papier et carton</td>
<td>Concentrateur / Transformateur / Preneur / Générateur</td>
<td>Collecte de papier et de carton. Traitement des matières collectées. Fabrication de produits faits de fibres recyclées. Génération de rejets de triturateurs.</td>
</tr>
<tr>
<td>Écocentre</td>
<td>Concentrateur</td>
<td>Site de récupération tarifiée pour les PME (résidus de construction, rénovation, démolition, pneus, etc.). Récupération des résidus domestiques dangereux.</td>
</tr>
<tr>
<td>Entreprise d’économie sociale</td>
<td>Concentrateur / Transformateur</td>
<td>Tri et démontage de matériel électronique. Reconditionnement.</td>
</tr>
<tr>
<td>Centre de Formation en Entreprise et Récupération (CFER)</td>
<td>Concentrateur / Transformateur</td>
<td>Récupération et recyclage de palettes de bois.</td>
</tr>
<tr>
<td>Ressourcerie</td>
<td>Concentrateur</td>
<td>Magasin d’articles d’occasion pour réemploi. Point de dépôt de matières visées par la REP.</td>
</tr>
</tbody>
</table>
4.1.5 Expertise technique

L’implantation de certaines synergies peut représenter des défis techniques et logistiques importants. Différents experts peuvent accompagner l’équipe de réalisation pour les surmonter : centres collégaux de transfert technologique, centres de recherche universitaires ou nationaux, consultants en gestion des matières résiduelles, firmes d’ingénierie, manufacturiers de technologies propres, laboratoires d’analyse privés, etc. Certains pourraient également faire partie intégrante de l’équipe de réalisation.

4.2 Étapes d’implantation

La création d’une symbiose industrielle repose sur cinq grandes étapes : l’élaboration du projet, le diagnostic territorial, le recrutement des participants et la collecte de données, l’identification des synergies potentielles et la mise en place et le suivi (cf. tableau 4). Chacune d’elles comprend des actions à réaliser en séquence dans une boucle d’amélioration continue.

Pourquoi faire appel aux experts?

- Faire l’inventaire des besoins et des ressources disponibles sur le territoire.
- Analyser le tissu industriel et les flux de matières sur le territoire.
- Visiter et auditer les organisations participantes.
- Déterminer les propriétés physico-chimiques des matières.
- Identifier et analyser les synergies potentielles.
- Analyser la faisabilité technico-économique des synergies.
- Réaliser des projets de recherche appliquée (nouveaux débouchés, validation technique, etc.).
- Développer des solutions de traitement de décontamination préalable à la mise en valeur des matières.
- Développer des prototypes ou des écoproduits.
- Identifier les équipements industriels pour l’adaptation ou la mise à l’échelle d’un procédé.
- Calculer les gains économiques ou environnementaux potentiels.
- Faire l’inventaire des émissions de gaz à effet de serre.
- Accompagnement pour une accréditation ou une certification quelconque.
- Etc.
Tableau 4 : Étapes d’implantation d’une symbiose industrielle

1. Élaboration du projet
- Délimiter le territoire où aura lieu la symbiose.
- Identifier, solliciter et mobiliser les partenaires.
- Faire le montage financier du projet.
- Lancer et diffuser le projet.

2. Diagnostic territorial
- Identifier les parties prenantes et analyser les enjeux locaux.
- Comprendre les caractéristiques industrielles du milieu.
- Identifier les filières existantes de mise en valeur.
- Sélectionner les organisations à solliciter.

3. Recrutement des participants et collecte de données
- Contacter les organisations sélectionnées.
- Collecter des données sur les flux de matières des organisations participantes afin d’en dresser une cartographie (intrants/demandes et extrants/offres).
- Compiler les informations recueillies.

4. Identification des synergies potentielles
- Identifier et analyser les opportunités de synergies à partir des offres et demandes formulées par les organisations à l’étape 3.
- Évaluer et prioriser les synergies les plus porteuses en fonction des critères des organisations participantes, de leur faisabilité technique et des gains qu’elles peuvent apporter.

5. Mise en place et suivi
- Communiquer les synergies potentielles aux organisations concernées.
- Assister les organisations dans leur processus de décision.
- Accompagner les organisations dans la mise en œuvre des recommandations.
- Tester et évaluer la faisabilité économique, technique, logistique, etc. Au besoin, réaliser des essais préliminaires en laboratoire, en industrie, sur site ou en consultant des experts.
- Définir les modalités d’échange. Au besoin, servir d’intermédiaire neutre dans les négociations et les discussions entre les intervenants impliqués dans la synergie.
- Faire le suivi de l’avancement des échanges, recueillir des informations sur les retours d’expérience et diffuser les résultats.

4.2.1 Étape 1 : Élaboration du projet
Dans un premier temps, le porteur du projet doit rassembler ses partenaires et définir le territoire de son groupe synergique, c’est-à-dire le périmètre à l’intérieur duquel la symbiose sera créée. Il peut s’agir d’un parc industriel, d’une ville, d’une municipalité régionale de comté (MRC) ou de toute autre zone d’activités. Le porteur est responsable de la mobilisation des partenaires et des ressources nécessaires à la réalisation du projet. À ce stade, les objectifs du projet sont déterminés et le porteur s’est entouré d’une équipe de réalisation constituée au minimum d’un chef de projet et d’un conseiller en écologie industrielle. Pour s’assurer d’une réponse positive du milieu, le projet doit être lancé officiellement et diffusé dans la collectivité. Ces activités de communication ont aussi l’avantage de donner de la visibilité, de l’autorité et de la crédibilité au projet. Elles doivent également susciter l’intérêt du public et la curiosité des parties prenantes concernées.

Facteurs de succès
- Créer une dynamique locale propice au déploiement de l’écologie industrielle. Démontrer son intérêt.
- Susciter l’engagement et la participation de leaders locaux.
- Établir des règles de gouvernance entre les partenaires et l’équipe de réalisation.
- Lancer et diffuser largement le projet (communiqué de presse, couverture médiatique, site Internet, etc.).
4.2.2 Étape 2 : Diagnostic territorial

Le diagnostic permet de mieux connaître les caractéristiques du territoire et les besoins des organisations. Il s’agit d’une étape essentielle pour orienter la symbiose vers des synergies pertinentes ayant un impact significatif sur les gains économiques, environnementaux et sociaux. Certaines informations préalables sont notamment indispensables à la réalisation de la symbiose (cf. tableau 5).

Tableau 5: Diagnostic territorial

<table>
<thead>
<tr>
<th>Informations à obtenir</th>
<th>Pourquoi est-ce important?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types et nombre d’entreprises ou d’autres organisations concernées (secteurs d’activité, nombre d’employés, parcs industriels, etc.).</td>
<td>Évaluer la dynamique du territoire en termes d’aménagement et de développement économique.</td>
</tr>
<tr>
<td>Métabolisme industriel territorial. Cartographie des flux (principaux flux de matières et d’énergie intrants et extrants).</td>
<td>Identifier les flux problématiques (gaspillage de ressources, matières enfouies, absence de débouchés, coûts de traitement exorbitants, etc.). Quantifier les gisements de matières potentiellement disponibles sur le territoire.</td>
</tr>
<tr>
<td>Réseau existant d’infrastructures et de fournisseurs pour la récupération et la mise en valeur des matières résiduelles (transporteurs, centres de tri, écocentres, lieux d’enfouissement de débris de construction et démolition, lieux d’enfouissement techniques, recycleurs, etc.).</td>
<td>Identifier les ressources et les acteurs locaux ou externes en activité sur le territoire susceptibles d’être sollicités au cours du projet. Identifier les filières et les services qui manquent ou qui sont à améliorer ou à développer.</td>
</tr>
<tr>
<td>Synergies déjà en place (types d’échange, porteurs, partenaires, retombées, retours d’expérience, etc.).</td>
<td>Démontrer la faisabilité technique et économique des synergies. Identifier des organisations proactives en écologie industrielle. Optimiser les synergies déjà en place.</td>
</tr>
<tr>
<td>Réseau d’expertise en écologie industrielle et activités connexes.</td>
<td>Identifier les ressources locales et externes pouvant accompagner le porteur dans les différentes étapes de mise en place de la symbiose (formation, collecte de données, essais de laboratoire, etc.).</td>
</tr>
</tbody>
</table>

4.2.3 Étape 3 : Recrutement des participants et collecte de données

La sélection des organisations participantes est capitale lors de la première vague du projet. À cette étape, il s’agit de choisir des organisations ayant un fort potentiel synergique (c.-a-d. la capacité de réaliser des synergies entre elles) afin d’initier le mouvement et d’obtenir rapidement des retombées. Le porteur, ses partenaires, le chef de projet et le conseiller en écologie industrielle sélectionnent ces organisations sur la base du diagnostic territorial et des orientations du projet. Le nombre d’organisations à sélectionner dépend des objectifs du projet et des ressources financières, humaines et matérielles disponibles. Si ces organisations sont judicieusement choisies, notamment en fonction de leur complémentarité, un groupe d’une douzaine de participants peut être suffisant pour initier une démarche.
Lignes directrices pour la sélection des participants

Basé sur ses différentes expériences de symbiose industrielle, le CTTÉI a développé des lignes directrices pour la sélection des organisations participantes afin d’impulser, en amont, la création de synergies. La participation de ces organisations est souvent un facteur gagnant :

1. Organisations proactives et volontaires (leaders économiques et en développement durable).
2. Fournisseurs de services environnementaux.
3. Organisations issues des secteurs d’activité les plus actifs.
4. Organisations œuvrant dans une grande variété de secteurs d’activité.
5. Donneurs d’emplois importants (taille des organisations).
6. Organisations ayant une problématique d’approvisionnement ou de disposition des matières et de l’énergie.

Après avoir été sélectionnées, les organisations doivent accepter de s’engager au projet. Différents mécanismes de recrutement peuvent être utilisés (réunion d’information, lettre, courriel, appel téléphonique, etc.), mais dans tous les cas, il est essentiel de vulgariser le projet et de préciser le niveau de participation attendu (temps, ressources humaines à dédier au projet, informations à fournir, entente de confidentialité, etc.). Les outils de communication développés pour le projet devront être particulièrement simples, clairs et cohérents. Ce premier contact avec les organisations est aussi un excellent moyen pour le porteur du projet de présenter l’équipe de réalisation et le conseiller en écologie industrielle.

Synergie Québec: pour diffuser et créer des synergies!

Au-delà d’une quinzaine d’organisations participantes, la gestion de l’information devient rapidement problématique. Développée par le CTTÉI, Synergie Québec (synergiequebec.ca) est une plateforme Web mettant en vitrine la communauté des projets de symbiose industrielle. Moyennant des frais d’adhésion, chacun peut y présenter ses partenaires et ses activités dans un blogue en édition autonome. Il héberge également un outil informatique permettant d’identifier les synergies potentielles à partir des offres et demandes des organisations membres.
Étape 4 : Identification des synergies potentielles

Pour identifier les synergies potentielles, le conseiller en écologie industrielle suit généralement un processus en quatre étapes :

1. Collecte de données : Obtenir de l’information quantitative et qualitative sur les intrants et les extrants des organisations participantes (demandes et offres de matières, d’énergie et de services).

3. Identification des synergies potentielles (comparaison des offres et des demandes) : Identifier les synergies potentielles, manuellement ou avec l’aide de l’outil de maillages semi-automatisé développé par le CTTÉI.

4. Préévaluation de la faisabilité technique, économique et logistique des synergies potentielles : Évaluer et hiérarchiser les opportunités de synergies avant les proposer aux organisations concernées.

Certains échanges vont de soi ; une offre de bois peut facilement être maillée à une demande pour le même produit. Cependant, l’expérience démontre que des maillages plus complexes peuvent être effectués comme l’insertion de résidus de verre dans la fabrication du béton, l’utilisation d’eau de rinçage de procédé alimentaire en alimentation animale, le recyclage des résidus d’acide phosphorique en fertilisants, etc. Ces possibilités d’échanges non traditionnels multiplient le nombre de synergies possibles. Cette expertise s’acquiert avec le temps ou au fil de collaborations avec des conseillers ou des spécialistes ayant des connaissances plus techniques ou une expérience en industrie.

Facteurs de succès

- Sélectionner, en premier lieu, des organisations proactives qui souhaitent s’investir, contribuer au projet et mettre en place les solutions proposées.
- Établir un lien de confiance entre les organisations participantes, l’équipe de réalisation et le conseiller en écologie industrielle.
- Collecter l’information efficacement. L’information peut être collectée par différents moyens (envoi d’un questionnaire, entrevue téléphonique, etc.), mais la visite industrielle est sans doute le plus efficace. Le conseiller en écologie industrielle devra être formé pour auditer les systèmes de gestion des matières résiduelles et les procédés industriels afin d’identifier rapidement les matières d’intérêt et les informations essentielles à collecter.
- Collecter de l’information de qualité (pertinente, valide, complète, précise, actuelle).
- Compiler les informations dans une base de données ou un outil informatique de création de synergies comme Synergie Québec.
- Mettre de côté les synergies ayant un faible potentiel de réussite pour des raisons techniques, économiques, légales, logistiques, etc.
4.2.5 Étape 5: Mise en place et suivi

Il ne suffit pas d’identifier théoriquement des synergies pour qu’elles se mettent miraculeusement en place entre deux organisations. Au cours du processus, le rôle du conseiller en écologie industrielle est de créer les conditions gagnantes permettant leur implantation. À cette étape, la rétroaction des entreprises participantes est essentielle puisque la décision de donner suite ou non à un échange leur revient. Pour maintenir leur intérêt, il faut favoriser une dynamique de groupe et développer leur sentiment d’appartenance au projet. Plusieurs moyens peuvent être mis en place pour y arriver : déjeuners-causeries, formations ou conférences sur des thématiques touchant plusieurs entreprises, activités de sensibilisation, visites industrielles, envoi de bulletins électroniques, etc. L’important est de communiquer souvent et de miser sur l’effet d’entraînement des cas à succès.

Processus de mise en place et de suivi

1. **Transmettre** aux organisations participantes la liste des synergies potentielles les concernant.
2. **Valider** la faisabilité des synergies auprès des organisations en fonction de leurs critères d’acceptabilité. Le cas échéant, identifier les obstacles à l’implantation des synergies et les moyens de les surmonter.
3. **Fournir** de l’accompagnement technique aux organisations lors des essais préliminaires (caractérisation des matières, recherche de transformateurs et de transporteurs, évaluations environnementales, etc.).
4. **Élargir** le périmètre de recherche pour répondre à des offres ou des demandes orphelines (c.-à-d. celles n’ayant pas trouvé preneur au sein des membres du groupe). D’autres organisations, même situées à l’extérieur du territoire, pourraient se greffer à la symbiose pour combler des besoins précis.
5. **Identifier** des opportunités d’affaires (attractivité, entreprises dont les offres ou demandes seraient complémentaires à celles présentes, développement de procédés, démarrage d’entreprises pour compléter l’offre de services, etc.).
6. **Diffuser** les résultats du projet aux parties prenantes et à la collectivité (dans le respect des ententes de confidentialité).
7. **Recueillir** les commentaires des parties prenantes (satisfaction, correspondance avec leurs besoins, retombées, etc.)
8. **Solliciter** de nouvelles organisations et reprendre l’exercice en continu pour assurer la pérennité de la démarche.
Facteurs de succès

- Éthique professionnelle (respect de la confidentialité, absence de conflit d’intérêt dans la proposition des synergies potentielles, transparence avec les partenaires, etc.)
- Bonnes relations avec le réseau de fournisseurs de services environnementaux.
- Focaliser, dans un premier temps, ses efforts sur les synergies à fort potentiel.
- Inciter les organisations ayant implanté des synergies à témoigner publiquement de leur expérience et des retombées.
- Établir un échéancier. Assiduité des suivis avec les organisations participantes.
- Entamer une seconde vague de sélection et de sollicitation d’organisations.

Tableau 6: Synthèse des projets de symbiose du CTTÉI

<table>
<thead>
<tr>
<th>Projets de symbiose</th>
<th>Bécancour</th>
<th>Lanaudière</th>
<th>Shawinigan</th>
<th>Rivière-du-Loup</th>
<th>Toronto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de territoire</td>
<td>Parc industriel</td>
<td>Région administrative</td>
<td>Parcs industriels</td>
<td>Ville</td>
<td>Zone d’activités</td>
</tr>
<tr>
<td>Nombre d’entreprises impliquées</td>
<td>12</td>
<td>158</td>
<td>31</td>
<td>18</td>
<td>76</td>
</tr>
<tr>
<td>Type de porteur</td>
<td>Société de gestion du parc</td>
<td>Organismes de développement économique</td>
<td>Organismes de développement économique</td>
<td>Ville</td>
<td>Partenariat public-privé</td>
</tr>
<tr>
<td>Nombre de synergies identifiées</td>
<td>109</td>
<td>285</td>
<td>72</td>
<td>101</td>
<td>49</td>
</tr>
</tbody>
</table>
5. Bilan

Faire le suivi de l’évolution d’une symbiose industrielle est essentiel afin d’améliorer sa performance sur le territoire. Mieux, pour augmenter la prévalence de ce type de projet et bonifier leur propre schéma de développement, les porteurs ont tout intérêt à mesurer leurs gains et à partager leur expérience.

La perception du succès de la démarche dépend fortement des priorités des participants. Il est donc très important de déterminer les besoins et les attentes des différentes parties prenantes au démarrage et en cours de projet. La symbiose n’est pas un objet statique, elle n’a pas de « fin » à proprement parler. Le bilan et le suivi doivent tout de même être faits régulièrement pour assurer la mise à jour du schéma de symbiose et la pérennité de la démarche.

Pour soutenir les porteurs dans leurs activités de bilan et de suivi, le Centre de transfert technologique en écologie industrielle (CTTÉI) a développé des indicateurs économiques, environnementaux, techniques/logistiques et humains qui pourraient aider les parties prenantes à mieux identifier leurs impacts et des pistes d’amélioration continue (cf. tableau 7). Ces indicateurs seront choisis en fonction de l’effet souhaité et seront suivis en fonction d’objectifs quantifiables préalablement établis.

La collecte d’information nécessaire à la reddition de comptes peut être réalisée par chacune des organisations participantes (sondage, suivi de rétroaction, rencontre annuelle, etc.). Il est souhaitable que les participants documentent leurs observations et les ajustements apportés en cours de projet. Ces renseignements pourront être compilés et analysés par le conseiller en écologie industrielle.
Tableau 7 : Indicateurs de suivi d’un projet de symbiose industrielle

<table>
<thead>
<tr>
<th>Indicateurs économiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Économies liées au coût des matières premières</td>
</tr>
<tr>
<td>Économies en coûts d’énergie</td>
</tr>
<tr>
<td>Économies en coûts d’eau</td>
</tr>
<tr>
<td>Économies en coûts d’équipements et d’infrastructures</td>
</tr>
<tr>
<td>Économies en coûts opérationnels et de gestion</td>
</tr>
<tr>
<td>Économies en frais de traitement et d’Épuration des rejets</td>
</tr>
<tr>
<td>Économies en frais d’élimination</td>
</tr>
<tr>
<td>Économies en coûts liés à l’achat d’allocations d’émissions de gaz à effet de serre dans le cadre du Système de plafonnement et d’échange de droits d’émission de gaz à effet de serre du Québec (SPEDE)</td>
</tr>
<tr>
<td>Économies en amendes liées à la réglementation (réduction des risques)</td>
</tr>
<tr>
<td>Revenus provenant de la vente de matières secondaires</td>
</tr>
<tr>
<td>Revenus provenant de la création d’un nouveau produit ou service</td>
</tr>
<tr>
<td>Revenus provenant de la vente d’allocations d’émissions de gaz à effet de serre dans le cadre du Système de plafonnement et d’échange de droits d’émission de gaz à effet de serre du Québec (SPEDE)</td>
</tr>
<tr>
<td>Rétenue des clients existants (amélioration de la réputation et augmentation de la compétitivité)</td>
</tr>
<tr>
<td>Nombre de nouveaux clients (amélioration de la réputation et augmentation de la compétitivité)</td>
</tr>
<tr>
<td>Retour sur l’investissement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicateurs environnementaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantité de déchets produits (incluant les matières dangereuses résiduelles)</td>
</tr>
<tr>
<td>Quantité de matière première économisée</td>
</tr>
<tr>
<td>Quantité d’énergie économisée</td>
</tr>
<tr>
<td>Quantité d’eau économisée</td>
</tr>
<tr>
<td>Quantité de gaz à effet de serre produite</td>
</tr>
<tr>
<td>Nombre de certifications environnementales obtenues</td>
</tr>
<tr>
<td>Nombre d’amendes liées à la réglementation</td>
</tr>
<tr>
<td>Nombre de produits issus de l’écoconception</td>
</tr>
</tbody>
</table>

Les indicateurs de suivi doivent être adaptés et bonifiés au cours du projet. Surtout, les initiatives et résultats doivent être documentés. Le partage d’expérience est un des facteurs clé pour améliorer le taux de réussite d’une symbiose industrielle. Les résultats peuvent être communiqués au moyen de colloques, présentations, formations, publications, plateforme Web comme Synergie Québec, etc. Les vitrines ne manquent pas. Cette étape de diffusion devrait être incluse dans la planification du projet.
Tableau 7: Indicateurs de suivi d’un projet de symbiose industrielle (suite)

Indicateurs techniques et logistiques

<table>
<thead>
<tr>
<th>Indicateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de procédés optimisés</td>
</tr>
<tr>
<td>Niveau d’optimisation des procédés</td>
</tr>
<tr>
<td>Temps économisé</td>
</tr>
<tr>
<td>Nombre d’installations ou équipements partagés</td>
</tr>
<tr>
<td>Nombre de nouvelles technologies développées</td>
</tr>
<tr>
<td>Nombre de technologies transférées</td>
</tr>
</tbody>
</table>

Indicateurs sociaux

<table>
<thead>
<tr>
<th>Indicateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d’emplois créés</td>
</tr>
<tr>
<td>Nombre de services partagés</td>
</tr>
<tr>
<td>Nombre d’espaces et d’infrastructures partagés</td>
</tr>
<tr>
<td>Nombre de certifications de responsabilité sociétale des entreprises obtenues</td>
</tr>
<tr>
<td>Nombre de nouveaux acteurs/parties prenantes</td>
</tr>
<tr>
<td>Nombre de formations offertes (développement des compétences)</td>
</tr>
<tr>
<td>Taux d’incidences de santé et sécurité</td>
</tr>
<tr>
<td>Taux de coopération des entreprises</td>
</tr>
<tr>
<td>Taux de participation de la communauté</td>
</tr>
<tr>
<td>Taux de sensibilisation auprès des organisations et de la communauté des enjeux</td>
</tr>
<tr>
<td>Niveau d’acceptabilité sociale</td>
</tr>
</tbody>
</table>

Annexes 3 et 4

Soutien d’activités en gestion des matières résiduelles :
- **Programmes d’aide financière de RECYC-QUÉBEC**

Certifications encadrant la gestion des matières résiduelles et le développement durable :
- **Programmes de certification**
6. Symbiose industrielle: perspectives à long terme

Comment s’assurer du succès d’une démarche de symbiose industrielle à long terme? Les expériences de cet ordre étant relativement récentes, peu de réponses existent sur les facteurs qui influencent leur pérennité. Malgré cela, certains aspects ont déjà révélé avoir une incidence favorable sur la création de projets d’une symbiose industrielle :

- La sollicitation en continu de nouvelles organisations pour rejoindre le groupe synergique.
- La mise à jour périodique des données sur les flux de matières et d’énergie.
- Le maintien de la dynamique entre les participants.
- La proposition d’activités et de services qui reflètent les besoins des organisations.
- Le partage des bonnes pratiques et la diffusion des résultats entre les différents groupes synergiques.
- Le recours à de l’expertise externe pour concrétiser les synergies plus complexes.
- L’appui de nouveaux partenaires (institutionnels, politiques, etc.) permettant d’inscrire la démarche dans une stratégie de développement plus globale.

Une symbiose industrielle n’est pas un objet statique. Pour assurer sa pérennité, suivre un modèle d’amélioration continue et reprendre du début les étapes d’implantation permet de réviser les objectifs et de nourrir la symbiose (cf. figure 6).

Figure 6

Étapes d’implantation et amélioration continue

- Élaboration du projet
- Diagnostic territorial / Suivi des indicateurs
- Sélection des participants
- Recrutement des participants
- Collecte des données
- Définition des modalités d’échange
- Évaluation de la faisabilité des synergies potentielles
- Communication des synergies potentielles aux participants
- Identification et priorisation des synergies
Les entreprises et autres organisations ont aujourd’hui clairement intérêt à optimiser la gestion de leurs flux de production en cherchant notamment des solutions dans leur environnement économique proche. Pour les acteurs publics, une idée-force est de tendre vers des circuits économiques courts en cherchant à réaliser un bouclage des flux de matières et d’énergie à une échelle donnée (territoire, filière, zone urbaine, zone d’activités, etc.).

Les progrès technologiques et les pressions concurrentielles bouleversent le secteur industriel. Ces mutations constantes entraînent des modifications rapides des modes de production, d’approvisionnement et de disposition des objets en fin de vie. La rapidité de ces chambardements dépasse de loin la capacité de nos sociétés à gérer intelligemment les ressources dans une perspective de développement durable. L’écologie industrielle se présente ainsi comme une véritable stratégie de développement durable des territoires, dont l’objectif est de limiter les impacts environnementaux du système productif dans son ensemble.

À vous de jouer!

Ce guide avait pour but de vous familiariser avec la démarche d’implantation d’une symbiose industrielle en vous faisant bénéficier des expériences récentes du CTTÉI. Vous aurez compris que chaque projet est unique et que les résultats obtenus sont à la hauteur des énergies qui y sont consacrées. Les nombreux conseils et ressources proposés devraient vous aider à optimiser vos efforts et éviter les faux pas. N’hésitez donc pas à y avoir recours et à nous tenir au courant des mises à jour.

Annexe 1

Répertoire d’experts en écologie industrielle

Analyse du cycle de vie (ACV)
Centre interuniversitaire de recherche sur le cycle de vie des produits, procédés et services (CIRAIG)
Polytechnique Montréal
http://www.ciraig.org/fr/acv.php

Quantis
http://www.quantis-intl.com

Écoconception
Institut de développement de produits (IDP)
http://www.idp-ipd.com

Aide technique et projets de R&D
Centre de transfert technologique en écologie industrielle (CTTÉI)
http://www.cttei.qc.ca

Réseau Trans-tech
Centres collégiaux de transfert de technologie
http://reseautranstech.qc.ca

Centre de recherche industrielle du Québec (CRIQ)
http://www.criq.qc.ca

Symbioses et bourses d’échange
Synergie Québec
http://synergiequebec.ca

Bourse des résidus industriels du Québec (BRIQ)
http://www.briq.ca
Annexe 2

Exemple de questionnaire de collecte de données

1. Identification
 • Nom de l’organisation (entreprise, compagnie, municipalité, organismes, etc.)
 • Date de l’entretien
 • Nom de la personne ayant rempli le questionnaire
 • Renseignements sur la personne dans l’organisation ayant fourni les informations à l’intervieweur : Personne-ressource; Nom; Fonction; Téléphone; Courriel
 • Secteur d’activité
 • Description des principales activités de l’organisation
 • Schéma des principaux flux de matières et des équipements d’un procédé.

2. Intrants
 Préciser pour chaque type de matière première utilisée susceptible d’être remplacée par une matière secondaire :
 • Type de matière et composition
 • Utilisation actuelle
 • Quantité consommée (masse, volume, etc.)
 • Spécifications techniques attendues
 • Taux de contamination accepté
 • Coût d’approvisionnement
 • Interactions possibles avec le procédé
 • Dangerosité et santé-sécurité.

3. Extrants
 Préciser pour chaque type de résidu susceptible d’être réintroduit dans un autre procédé industriel :
 • Type de matière
 • Quantité disponible (masse, volume, etc.)
 • Provenance
 • Caractérisation
 • Mode de disposition actuel :
 (don, récupération, enfouissement, incinération, etc.)
 • Coût de traitement et de disposition
 • Capacité d’entreposage
 • Dangerosité et santé-sécurité.

4. Équipements et bâtiments
 Préciser les équipements susceptibles d’être partagés et à quelles conditions (presse à carton, conteneur à bois, spectromètre, salle de conférences, etc.).

5. Besoins particuliers
 Préciser s’il y a lieu les besoins particuliers de l’organisation (formation, santé-sécurité, eaux de procédé, etc.).
Annexe 3

Programmes d’aide financière de RECYC-QUÉBEC

Pour soutenir les activités de gestion des matières résiduelles menées par différents types de clientèles, le Plan d’action 2011-2015 de la PQGMR offre plusieurs programmes d’aide financière (cf. tableau 8) :

- Performance des ICI en GMR.
- Implantation de technologies et de procédés et développement des marchés.
- Économie sociale et mobilisation des collectivités.
- Performance des centres de tri des matières recyclables de la collecte sélective.
- Programmes de bourses d’études supérieures.

De plus, une des orientations du Plan stratégique 2012-2017, de RECYC-QUÉBEC vise plus spécialement les Industries, Commerces et Institutions (ICI) et le secteur de la Construction, Rénovation et Démolition (CRD) : la société d’État accompagnera sur le terrain les parcs industriels et les centres commerciaux afin qu’ils se dotent de systèmes de récupération adéquats. D’autres programmes offerts par différents ministères pourraient également aider les organisations à réaliser leurs projets de développement durable.

Pour en savoir plus

Programmes d’aide financière de RECYC-QUÉBEC et programmes complémentaires
Tableau 8 : Programmes de RECYC-QUÉBEC

<table>
<thead>
<tr>
<th>Programmes</th>
<th>Projets admissibles</th>
<th>Clientèles admissibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance des centres de tri des matières recyclables de la collecte sélective</td>
<td>État de situation et analyse de performance. Investissement dans l’amélioration, l’implantation, la consolidation ou la transformation.</td>
<td>Centre de tri des matières recyclables.</td>
</tr>
<tr>
<td>Programmes de bourses d’études supérieures</td>
<td>Développement des connaissances et du savoir-faire en gestion des matières résiduelles.</td>
<td>Étudiant de 2e et 3e cycle.</td>
</tr>
</tbody>
</table>
Annexe 4

Programmes de certification

Une grande variété de certifications et d’attestations encadre la gestion des matières résiduelles et le développement durable (cf. tableau 9). Pour les organisations participantes à un projet de symbiose industrielle, ce processus peut être l’occasion de valider la conformité de leurs pratiques et de faire reconnaître publiquement leurs efforts et leurs réalisations en gestion des ressources et des sous-produits. En affirmant leur leadership, elles témoignent également de l’engagement et de l’implication de leurs employés.
Tableau 9 : Programmes de certification

<table>
<thead>
<tr>
<th>Programmes</th>
<th>Organismes</th>
<th>Activités visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÉcoLogo http://www.ecologo.org</td>
<td>UL (anciennement TerraChoice)</td>
<td>Label écologique vérifié par un tiers indépendant (compare les produits et services avec d’autres dans la même catégorie).</td>
</tr>
<tr>
<td>BOMA BEST (Building Environmental Standards) http://www.bomabest.com</td>
<td>Building Owners and Managers Association (BOMA) of Canada</td>
<td>Performance énergétique et environnementale des immeubles (bureaux, centres commerciaux, commerces de détail de plein air, bâtiments industriels légers, immeubles d’habitation).</td>
</tr>
<tr>
<td>Leadership in Energy and Environmental Design (LEED)http://www.cagbc.org/Content/NavigationMenu/Programs/LEED/default.htm</td>
<td>Conseil du bâtiment durable du Canada</td>
<td>Norme de comparaison acceptée à l’échelle internationale pour la conception, la construction et l’exploitation de bâtiments écologiques à haut rendement.</td>
</tr>
</tbody>
</table>